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Motivation

* Understanding and forecasting air quality is a national and global concern.

* The number of people exposed to extreme heat at least once every five years
will double under a 2°C scenario relative to a 1.5°C scenario (IPCC).

 Warmer days and extreme heat events will stress populations by exacerbating
poor air quality resulting from increased near-surface ozone (O,) and
particulate matter (PM).

* NOAA has the mandate and the capability to understand how the Earth system
will change in a warmer world.

* The challenge for OAR’s Labs and Programs, including CPO/ESSM, is to
understand changing atmospheric composition, emissions and state conditions,
in order to properly characterize and project changes in air quality resulting
from extreme heat.
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Figure 1. Changes in Concentrations of Criteria Pollutants, 1990-2015.

+25% difference from 2016 levels

New York Times,
24 October 2019

After years of
national decline ...
(PM2.5) started to

... fine particulate pollution

increase after 2016.

US air quality improved significantly beginning in
the 1970’s due to the Clean Air Act and
subsequent regulations. But recent monitoring
data suggest a reversal of national pollution
trends. And many Americans still live in areas
that don’t meet current regulatory standards for
O; and PM.
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Poor air quality is an increasingly critical issue in many parts of the
world and is a leading cause of global illness and mortality.
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Public health, environmental and social determinants of health (PHE)

Burden of disease from ambient and household air pollution

In new estimates released, WHO reports that in 2012 around 7
million people died - one in eight of total global deaths — as a
result of air pollution exposure. This finding more than doubles
previous estimates and confirms that air pollution is now the
world’s largest single environmental health risk. Reducing air

' pollution could save millions of lives.

d Read the news release on air pollution attributable deaths
i Read the feature story on air pollution

¥ FAQs on air pollution and health
2 pdf, 169kb

¥ Air pollution estimates
= pdf, 1.16Mb
Summary of results and method descriptions

3.7 million 4.3 million 1600 cities
d eat h S d eat h S worldwide are reporting air pollution levels

attributable to ambient air pollution attributable to household air pollution

www.who.int/phe/health topics/outdoorair/

“It was estimated in
2012 that 26% of
childhood deaths and
' 25% of the total

| disease burden in
W8 children under five
| could be prevented
through the reduction
of environmental risks
such as air pollution,
unsafe water,

Don’t pollute my future! sanitation and

THE IMPACT OF THE ENVIRONMENT inadequate hygiene or
ON CHILDREN'S HEALTH chemicals.”

g"@ World Health
%Y Organization

http://www.who.int/ceh/en/
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Poor air quality, particularly higher near-surface O,, enhances
human mortality on heat wave days compared with non-heat wave
days, exacerbating the effect of increased temperatures alone.
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Results from a random effects meta-analysis in
9 European cities, showing % increase in the
daily number of deaths in days with a heat
wave and a “low” or “high” level of ozone,
adjusting for barometric pressure, wind speed,
calendar month, day of the week, holiday, and
time trend, by cause of death and age group.

Analitis et al., Epidemiology, 2014



Avg BHWs Year

Avg Days/Year

Observations from the past 50-60 years show that US heat waves
are now more frequent, last longer, and are more intense.
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Models predict substantial changes to typical summertime
meteorology in the continental US within the next 30 years.
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Observations from the past few decades demonstrate that US air
quality, at least in terms of ozone, is worse during heat waves.

a) Maximum Daily Ozone, Observed
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Models predict that by 2050, warmer temperatures will result in
longer episodes of high ozone across much of the continental US,
assuming anthropogenic precursor emissions remain constant.
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Models predict that by mid-century, US surface ozone maxima will...
* decrease if anthropogenic O, precursor emissions decline,
* and increase if emissions remain at present-day levels.
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Models predict that by the mid-
215t century:

Where precursor emissions
decrease, O; will decrease
more on heat wave days than
non-heat wave days.

O; will increase where
precursor emissions are
constant or increasing.
Biogenic emissions changes
from higher temperatures
will modulate the impacts of
anthropogenic emissions
changes.

Meehl et al., Geophys. Res. Lett., 2018



Heat waves will increase biogenic emissions from both natural
vegetation and managed landscapes, providing more O, and PM
precursors regardless of how anthropogenic emissions change.
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NOAA is mandated to produce an operational National Air Quality
Forecast Capability, which requires ongoing research for improvement.
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Heat wave turns deadly and is
expected to last through the Fourth of
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Neglﬂ]ﬁ;ork A Heat Wave Bakes Europe,
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Where Air-Conditioning Is Scarce

NOAA has a powerful research toolbox to
study urban air quality during heat waves.

High surface ozone during heatwaves

Aircraft Measurements

Mobile Laboratories

Science

ATMOSPHERIC CHEMISTRY

Volatile chemical products emerging
as largest petrochemical source of
urban organic emissions

New Insights into Emissions




Some concluding thoughts

Anthropogenically-induced climate change is increasing the frequency and
duration of extreme heat events.

In addition to its meteorological impacts, extreme heat generally increases
biogenic and anthropogenic emissions and the rate of atmospheric chemical
reactions, leading to a complex set of responses by near-surface O, and PM.
Extreme heat generally causes poorer air quality, with attendant adverse
impacts on human health.

Air quality impacts from extreme heat, including the frequency and duration
of high ozone events, will already be significant by the mid-215t century.
NOAA’s mission to protect lives and property provides the mandate to
maintain and improve its capabilities to measure, understand, and make
projections of how extreme heat affects air quality.

CPO/ESSM can help lead these efforts, by convening the expert community,
supporting research, and communicating science to stakeholders.



